On the Denominator of the Poincaré Series for Monomial Quotient Rings

نویسندگان

  • HARA CHARALAMBOUS
  • H. CHARALAMBOUS
چکیده

Let S = k[x1, . . . , xn] be a polynomial ring over a field k and I a monomial ideal of S. It is well known that the Poincaré series of k over S/I is rational. We describe the coefficients of the denominator of the series and study the multigraded homotopy Lie algebra of S/I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of Multigraded Poincaré Series for Monomial Rings

Backelin proved that the multigraded Poincaré series for resolving a residue field over a polynomial ring modulo a monomial ideal is a rational function. The numerator is simple, but until the recent work of Berglund there was no combinatorial formula for the denominator. Berglund’s formula gives the denominator in terms of ranks of reduced homology groups of lower intervals in a certain lattic...

متن کامل

Computation of Poincaré-Betti Series for Monomial Rings

The multigraded Poincaré-Betti series P k R(x̄; t) of a monomial ring k[x̄]/〈M〉 on a finite number of monomial generators has the form ∏ xi∈x̄ (1+xit)/bR,k(x̄; t), where bR,k(x̄; t) is a polynomial depending only on the monomial set M and the characteristic of the field k. I present a computer program designed to calculate the polynomial bR,k for a given field characteristic and a given set of monom...

متن کامل

New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups

In this paper, a new  algorithm for computing secondary invariants of  invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants.  The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...

متن کامل

Poincaré Series of Monomial Rings

Let k be a field, let I be an ideal generated by monomials in the polynomial ring k[x1, . . . , xt] and let R = k[x1, . . . , xt]/I be the associated monomial ring. The k-vector spaces Tori (k, k) are N -graded. We derive a formula for the multigraded Poincaré series of R, PRk (x, z) = ∑ i≥0,α∈Nt dimk Tor R i,α(k, k)x z, in terms of the homology of certain simplicial complexes associated to sub...

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004